DataBug for Techies
  • Home
  • Getting Started
    • The DataBug process
    • Agents
      • Deploying your own Agent
      • IP Address Ranges
    • Connections
      • Relational Databases
        • Azure SQL
        • Azure Synapse Analytics
        • Firebird
        • IBM DB2
        • Microsoft SQL Server
        • MySQL
        • Oracle
        • PostgreSQL
      • Non-Relational Databases
        • Apache Cassandra
        • Apache CouchDB
        • Apache HBase
        • Azure Cosmos DB
        • Couchbase
        • Elasticsearch
        • MongoDB
        • Neo4j
        • RavenDB
      • Key-Value Stores
        • Amazon DynamoDB
      • File-Based Databases
        • Microsoft Access
        • H2
        • SQLite
      • Flat Files
        • Amazon S3
        • Azure Blob Storage
        • Azure File Storage
        • Local Folder
      • Web-Based Data
        • HTTP URL
    • Problem Definitions
    • Key Skills
  • 1. Gathering data
    • Working with query templates
    • Relational databases
      • Platforms
        • Microsoft SQL Server
    • No SQL databases
      • Defining schemas for JSON
      • Flattening JSON data
      • Platforms
        • Apache HBase
        • Neo4J
    • APIs
      • Platforms
        • ECOES API
    • Logs
      • Ingestion of log data
  • 2. Analyzing Data
    • Overview
  • 3. Managing Cases
    • Creating Cases
Powered by GitBook

Links

  • Guidance for Users
  • DataBug.com

Copyright © 2023 Red Bear Software Limited

On this page

Was this helpful?

  1. 1. Gathering data
  2. No SQL databases
  3. Platforms

Apache HBase

To be continued

Unwrapping Results

You can optionally choose to unwrap the results received from your HBase filter expression and strip any column family prefixes.

Examples of the differences between default and unwrapped results are shown below.

Unwrapping occurs prior to any transforms you have defined.

[
  {
    key: 'row1',
    column: 'vi:make',
    timestamp: 1633083254523,
    '$': 'bmw'
  },
  {
    key: 'row1',
    column: 'vi:model',
    timestamp: 1633083254533,
    '$': '5 series'
  },
  {
    key: 'row1',
    column: 'vi:year',
    timestamp: 1633083254544,
    '$': '2012'
  },
  {
    key: 'row2',
    column: 'vi:make',
    timestamp: 1633083254556,
    '$': 'mercedes'
  },
  {
    key: 'row2',
    column: 'vi:model',
    timestamp: 1633083254567,
    '$': 'e class'
  },
  {
    key: 'row2',
    column: 'vi:year',
    timestamp: 1633083254586,
    '$': '2012'
  }
]
[
  {
    key: 'row1',
    'vi.make': 'bmw',
    'vi.model': '5 series',
    'vi.year': '2012'
  },
  {
    key: 'row2',
    'vi.make': 'mercedes',
    'vi.model': 'e class',
    'vi.year': '2012'
  }
]
[
  {
    key: 'row1',
    make: 'bmw',
    model: '5 series',
    year: '2012'
  },
  {
    key: 'row2',
    make: 'mercedes',
    model: 'e class',
    year: '2012'
  }
]
PreviousPlatformsNextNeo4J

Last updated 3 years ago

Was this helpful?