DataBug for Techies
  • Home
  • Getting Started
    • The DataBug process
    • Agents
      • Deploying your own Agent
      • IP Address Ranges
    • Connections
      • Relational Databases
        • Azure SQL
        • Azure Synapse Analytics
        • Firebird
        • IBM DB2
        • Microsoft SQL Server
        • MySQL
        • Oracle
        • PostgreSQL
      • Non-Relational Databases
        • Apache Cassandra
        • Apache CouchDB
        • Apache HBase
        • Azure Cosmos DB
        • Couchbase
        • Elasticsearch
        • MongoDB
        • Neo4j
        • RavenDB
      • Key-Value Stores
        • Amazon DynamoDB
      • File-Based Databases
        • Microsoft Access
        • H2
        • SQLite
      • Flat Files
        • Amazon S3
        • Azure Blob Storage
        • Azure File Storage
        • Local Folder
      • Web-Based Data
        • HTTP URL
    • Problem Definitions
    • Key Skills
  • 1. Gathering data
    • Working with query templates
    • Relational databases
      • Platforms
        • Microsoft SQL Server
    • No SQL databases
      • Defining schemas for JSON
      • Flattening JSON data
      • Platforms
        • Apache HBase
        • Neo4J
    • APIs
      • Platforms
        • ECOES API
    • Logs
      • Ingestion of log data
  • 2. Analyzing Data
    • Overview
  • 3. Managing Cases
    • Creating Cases
Powered by GitBook

Links

  • Guidance for Users
  • DataBug.com

Copyright © 2023 Red Bear Software Limited

On this page

Was this helpful?

  1. Getting Started

Connections

A connection provides DataBug with the details it needs to connect to a data source.

PreviousIP Address RangesNextRelational Databases

Last updated 1 year ago

Was this helpful?

Connections are defined using YAML syntax via the user interface.

A more wizard-like approach to defining connections will come in a future update.

Here's an example of how to set up a SQL Server connection:

<- Animated GIF here ->

DataBug can work with:

  • - e.g. SQL Server, Oracle, MySQL;

  • - e.g. MongoDB, Cosmos DB, Neo4j;

  • - e.g. DynamoDB; and

  • - e.g. Microsoft Access, SQLite, H2;

  • - e.g. JSON, XML, CSV, Parquet;

  • - e.g. APIs.

The details required to set up each connection differ according to each data source.

relational databases and warehouses
non-relational databases
key-value stores
file-based databases
flat files
web-based data